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For T a topological space and X a real normed space, Y=C(T, X) denotes the
space of continuous and bounded functions from T into X endowed with the sup
norm. We calculate a formula for the distance :( f ) from f in Y to the set Y&1 of
functions in Y which have no zeros. Namely, we prove that :( f ) is the infimum of
numbers $>0 for which the continuous function t [ f (t)�& f (t)& defined for every
t with & f (t)&�$ has a continuous extension e from T into the unit sphere of X.
This permits us to get the general expression of the Aron�Lohman *-function of Y
when X is strictly convex. We show that any function in Y has a best approxima-
tion in Y&1 which can be chosen to have the least possible norm. If X is strictly
convex and E(Y) denotes the set of extreme points of the unit ball of Y, this fact
enables us to prove that dist( f, E(Y))=max[1&m( f )+:( f ), & f &&1] \f # Y,
where m( f )=inf [& f (t)&: t # T]. Moreover, we show that E(Y) is proximinal in
Y&1 and give sufficient conditions under which f in Y"Y &1 admits a best approxi-
mation in E(Y). � 1999 Academic Press

1. INTRODUCTION AND NOTATION

Throughout this paper the letter T stands for a topological space, while
X denotes a real normed space. B(X), S(X), and E(X) are the closed unit
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ball of X, the unit sphere of X, and the set of extreme points of B(X),
respectively.

We denote by C(T, X) the space of X-valued continuous and bounded
functions on T equipped with the supremum norm. To simplify the nota-
tion we will frequently write Y instead of C(T, X).

Moreover, Y&1 will denote the set of the functions in Y which have no
zeros. That is,

Y&1=[ f # C(T, X): f (t){0 \t # T].

Let us observe that for X=K (R or C), Y&1 is the group of the invertible
elements in the algebra C(T, K).

For every function f in Y, we consider the notation

m( f )=inf [& f (t)&: t # T] and :( f )=dist( f, Y&1).

In Section 2, we show that m( f ) is the distance from an element f in Y
to the set Y"Y&1. Moreover, we calculate the distance :( f ) for each f
in Y. To be more precise, we prove that :( f ) is the infimum of numbers
$>0 for which the continuous function t [ f (t)�& f (t)& defined for every t
with & f (t)&�$, has a continuous extension e: T � S(X).

Working now in the more special case of a space C(T, X) being X a
strictly convex normed space we see that the knowledge of the parameters
m( f ) and :( f ) determines the distance of f to the set of extreme points of
B(Y). Namely, we obtain dist( f, E(Y))=max[1&m( f )+:( f ), & f &&1],
\f # Y.

Let A be a subset in Y, a best approximation in A for f # Y is a function
g # A such that & f& g&=dist( f, A). If A/B/Y, the set A is said to be
proximinal in B if every element f of B has a best approximation in A.

We show that Y&1 is proximinal in Y with a best approximation which
can be chosen to have the least possible norm (Corollary 2.4). For
Y=C(T, X) with X a strictly convex space we study the problem of the
existence of best approximations in E(Y) for an element f in Y. In fact we
prove that E(Y) is proximinal in Y&1 (Corollary 2.7). Furthermore, several
conditions are given that are sufficient for the existence of a best approxi-
mation in E(Y) for functions in Y"Y&1 (see Proposition 2.8 and Corollaries
2.9 and 2.17).

Section 3 is devoted to the study of a geometric function, called *-function,
which was introduced in [1]. Until now, the expression of the *-function
of C(T, X) is only known if X is strictly convex and C(T, X) has the *-
property (see Section 3 for definitions and references). The knowledge of
:( f ) for every f in C(T, X) permits us to get the general expression of the
*-function of this space when X is strictly convex although C(T, X) has not
the *-property. This new formula provides information about the problem
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of minimal decompositions of elements as convex combinations of extreme
points.

2. DISTANCE TO THE EXTREME FUNCTIONS IN C(T, X)

Proposition 2.1. Let T be a topological space and X a normed space.
For every f in Y we have m( f )=dist( f, Y"Y&1).

Proof. If f # Y"Y&1, then m( f )=dist( f, Y"Y &1)=0.
Let f be in Y&1. Given g in Y"Y&1, there exists some t0 in T such that

g(t0)=0. Then clearly m( f )�& f (t0)&=& f (t0)& g(t0)&�& f& g& and so
m( f )�dist( f, Y"Y&1).

Conversely, given =>0, there is a t0 # T verifying that & f (t0)&<
m( f )+=. Define g: T � X by

g(t)= f (t)&
f (t)

& f (t)&
& f (t0)&, \t # T.

Clearly g # Y"Y&1 and &g(t)& f (t)&=& f (t0)&<m( f )+=, \t # T. Hence

dist( f, Y"Y&1)�& f& g&�m( f )+=

and, since = is arbitrary, we conclude that dist( f, Y"Y&1)�m( f ) which
proves the equality. K

To get our objectives we will need the following theorem which is, in our
opinion, intrinsically interesting.

Theorem 2.2. Let T be a topological space and X a normed space. Given
an element f in Y, there exists, for every $>:( f ), a continuous function e
from T into S(X) such that e(t)= f (t)�& f (t)& for every t # T with & f (t)&�$.

Proof. Choose \ with :( f )<\<$. Then there is a continuous mapping
h: T � X which has no zeros and satisfies & f&h&<\.

Let .: X � [0, 1] be a continuous function such that

.(x)={0 if &x&�\
1 if &x&�$.

Let us define the function g: T � X by

g(t)=.( f (t)) f (t)+(1&.( f (t)) h(t)), \t # T.

If & f (t)&�\, then it is clear that g(t)=h(t). If & f (t)&�$, we have
g(t)= f (t). If \<& f (t)&<$ it follows that g(t){0. Hence, g is in Y&1.
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The proof is complete if we define e: T � X by e(t)= g(t)�&g(t)& for each
t in T. K

In the next corollary, we obtain an useful characterization of the distance
:( f ) of an element f in Y to the set Y&1.

Corollary 2.3. Let T be a topological space and X a normed space.
For every f in Y, :( f ) is the infimum of numbers $>0 for which the
continuous function

t [
f (t)

& f (t)&
,

defined for every t with & f (t)&�$ has a continuous extension e: T � S(X).

Proof. From the last theorem it suffices to show that if $ is a positive
real number such that there is a continuous mapping e: T � S(X) verifying
the condition

e(t)=
f (t)

& f (t)&
whenever t # T satisfies & f (t)&�$,

then $�:( f ). For it, we take g(t)= f (t)+$e(t) for each t # T. The function
g is in Y&1. Indeed, if & f (t)&�$ we have

g(t)= f (t)+$
f (t)

& f (t)&
= f (t) \1+

$
& f (t)&+{0

and if & f (t)&<$, it is clear that &g(t)&=& f (t)+$e(t)&�$&& f (t)&>0.
Moreover & f (t)& g(t)&=&$e(t)&=$, \t # T. So :( f )�& f& g&=$. K

Let us observe that :( f )�& f &, \f # Y. Indeed, if x in S(X), let g be
defined by g(t)= f (t)+(=+& f &) x for each t in T with =>0. Clearly
g # Y&1 and &g& f &=& f &+=. Hence :( f )�& f &+= and, since = is arbitrary,
we conclude that :( f )�& f &.

In the corollary which follows we obtain that the distance from an
element f in Y to the set Y&1 is attained at some g in Y&1, and this best
approximation can be chosen to have the least possible norm.

Corollary 2.4. Let T be a topological space and X a normed space.
For each f in Y there is a g in Y&1 such that & f& g&=:( f ) and &g&=
& f &&:( f ). In other words, Y&1 is proximinal in Y.
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Proof. If :( f )=0 or :( f )=& f &, we can take g= f and g=0, respectively,
and the desired conclusion holds. Thus we may assume 0<:( f )<& f &.

For 0<$�& f &, we define the function g$ : T � X to be

g$(t)={
f (t)

& f (t)&
(& f (t)&&$)

0

if & f (t)&�$

if & f (t)&<$.

Obviously g$ is continuous. Note also that & f& g$&=$ and &g$&=& f &&$.
For :( f )<$�& f &, by Theorem 2.2, there is e: T � S(X) continuous such
that

e(t)=
f (t)

& f (t)&
if & f (t)&�$.

Fix =>0 and define h: T � X by

h(t)= g$(t)+=e(t), \t # T.

It is easily seen that h is in Y&1 and that &h& g$ &==. Hence we conclude
that g$ # Y&1. With :=:( f ), it is immediate that &g$& g: &�$&:, hence
g: is in Y&1 and by the above &g:& f&=:=:( f ) and &g:&=& f &&:( f ).
Taking g= g: , the corollary follows. K

Proposition 2.5. Let T be a topological space and X a normed space.
Take f in Y and $>0. Assume that there exists a continuous mapping
e: T � S(X) such that

e(t)=
f (t)

& f (t)&
if & f (t)&�$.

Then & f&e&�max[$+1, & f &&1].

Proof. If & f (t)&<$, it follows that

& f (t)&e(t)&�& f (t)&+&e(t)&<$+1�max[$+1, & f &&1].

If & f (t)&�$, we have that

& f (t)&e(t)&=" f (t)&
f (t)

& f (t)&"=| & f (t)&&1|.

When & f (t)&�1, then

& f (t)&e(t)&=& f (t)&&1�& f &&1
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and if & f (t)&<1, we have

& f (t)&e(t)&=1&& f (t)&�1&$<1+$.

Hence if & f (t)&�$ then & f (t)&e(t)&�max[$+1, & f &&1].
So & f (t)&e(t)&�max[$+1, & f &&1] for every t in T and the proposi-

tion follows. K

Given a topological space T and a strictly convex normed space X, it is
known that E(Y) consists of those f # Y such that f (T ) is contained in the
unit sphere of X. In this case, we can determine the distance from an element
f in Y to the set of extreme points of B(Y).

Theorem 2.6. Let T be a topological space and X a strictly convex
normed space. Consider an element f in Y. Then

dist( f, E(Y))={max[1&m( f ), & f &&1]
max[1+:( f ), & f &&1]

if f # Y &1

if f � Y&1.

Proof. For any f # Y, we always have

& f&e&�& f &&&e&=& f &&1, \e # E(Y).

Since m( f )=m(e&(e& f ))�1&&e& f&, \e # E(Y) it follows that & f&e&
�1&m( f ), \e # E(Y) and so

dist( f, E(Y))�max[1&m( f ), & f &&1]

which verifies in particular if f # Y&1.
On the other hand, if f # Y&1, consider the mapping e from T into S(X)

given by e(t)= f (t)�& f (t)& for each t in T. A slight change in the proof of
the last proposition shows that

& f (t)&e(t)&�max[1&m( f ), & f &&1] \t # T,

and so dist( f, E(Y))�& f&e&�max[1&m( f ), & f &&1], which proves the
equality in case f # Y &1 and shows that e is a best approximation to f
in E(Y).

Let us now suppose that f � Y&1. Given = # R+ and e # E(Y), define
;=& f&e&+=. It is clear that ;>1. Then we calculate

&(;&1) e(t)+ f (t)&�;&&e(t)& f (t)&

�;&&e& f&==>0, \t # T,
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whence (;&1) e+ f # Y&1. But this implies that :( f )�& f&e&+=&1,
hence 1+:( f )�& f&e& because = is arbitrary. Since this holds for every e
in E(Y), we have thus established the inequality

dist( f, E(Y))�max[1+:( f ), & f &&1].

To prove the reverse inequality we observe the following

dist(g, E(Y))�max[1, &g&&1] \g # Y&1,

which is due to the first part. By continuity

dist(g, E(Y))�max[1, &g&&1] \g # Y&1.

By Corollary 2.4 there is a best approximation g in Y&1 satisfying & f& g&
=:( f ) and &g&=& f &&:( f ). Then

dist( f, E(Y))�& f& g&+dist(g, E(Y))

�:( f )+max[1, &g&&1]

�max[1+:( f ), & f &&1]. K

A similar formula for C*-algebras was proved in [9, Theorem 2.7;
8, Theorem 10; 3, Theorem 2.3].

From the first part of the proof of Theorem 2.6, we obtain

Corollary 2.7. Let T be a topological space and X a strictly convex
normed space. Then E(Y) is proximinal in Y&1.

With the hypotheses on T and X as in the above corollary, Example 14
in [8] shows that in this type of spaces C(T, X) we can not expect in
general to have best approximations in E(Y) for functions f with :( f )>0.
However, Theorem 2.2 permits us to get the following result.

Proposition 2.8. Let T be a topological space and X a strictly convex
normed space. If f is an element in Y with & f &>:( f )+2, then f admits a
best approximation in E(Y).

Proof. Let $ be given by & f &&2>$>:( f ). By Theorem 2.2 we can
then find e: T � S(X) continuous such that e(t)= f (t)�& f (t)& if & f (t)&�$.
Proposition 2.5 shows that & f&e&�max[$+1, & f &&1]=& f &&1.
Theorem 2.6 implies that

dist( f, E(Y))=max[:( f )+1, & f &&1]=& f &&1

and we have the equality dist( f, E(Y))=& f&e&. K
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The characterization of :( f ), given in Corollary 2.3, involves a infimum.
By [8, Example 14] this infimum can not be attained in general. The next
result shows that if (X is strictly convex and) :( f ) is attained so is the
distance dist( f, E(Y)).

Corollary 2.9. Let T be a topological space and X a strictly convex
normed space. Let f be in Y with :( f )>0 and assume that there exists a
continuous mapping e: T � S(X) such that

e(t)=
f (t)

& f (t)&
if & f (t)&�:( f ).

Then e is a best approximation for f in E(Y).

Proof. The result follows immediately from Proposition 2.5 and
Theorem 2.6. K

According to the above, the existence of best approximations in E(Y) is
closely related to the possibility of decomposing f # Y in the form

f (t)=& f (t)& e(t), \t # T

for some continuous function e: T � S(X). This motivates the following.

Definition 2.10. Let T be a topological space and X a normed space.
It is said that a continuous function f from T into X admits a weak polar
decomposition if f (t)=& f (t)& e(t) \t # T for some continuous mapping
e: T � B(X). If a decomposition exists for every element in C(T, X) we say
that C(T, X) has the weak polar decomposition property. Similarly we shall
say that C(T, X) has the polar decomposition property if, for every f in
C(T, X), there is a continuous function e: T � S(X) such that f (t)=& f (t)& e(t)
\t # T.

We proceed to study what spaces C(T, X) have this property. For it we
need remember the following concepts.

Definition 2.11. Let T be a topological space and A a subset of T. We
shall say that A is a cozero-set if there is a continuous mapping .: T � R
such that

A=[t # T: .(t){0].

Two subsets B1 and B2 of A are said to be completely separated in A if
there exists a continuous function �: A � R such that

�(t)=0 \t # B; �(t)=1 \t # B2 .
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If X is a real normed space we say that A is C(T, X)-embedded in T if
every function in C(A, X) admits an extension in C(T, X). For X=R, it is
said that A is C*-embedded in T.

We will say that T is an F-space if every cozero-set is C*-embedded
in T.

The basic result about C*-embedding is Urysohn's extension theorem.

Theorem 2.12 [6, 1.17]. Let T be a topological space and A a subset
of T. Then A is C*-embedded in T if and only if any two completely
separated sets in A are completely separated in T.

As a consequence the following is obtained.

Corollary 2.13 [6, 4.25]. Let T be a topological space. The following
are equivalent conditions:

(1) T is an F-space

(2) Every continuous function f: T � R admits a weak polar decomposition.

The result which follows can be proved easily.

Proposition 2.14. Let T be a topological space and X a normed space.

(1) If X$ is a normed space isomorphic to X, C(T, X) has the polar
decomposition property if and only if C(T, X$) has it.

(2) If C(T, X) has the polar decomposition property, then so has every
continuous function from T into X (not necessarily bounded ).

We now see that R may be replaced in the definition of F-spaces by any
finite-dimensional real normed space.

Proposition 2.15. Let T be a topological space. The following affirma-
tions are equivalent.

(1) T is an F-space.

(2) Every cozero-set is C(T, X)-embedded for each real normed space
X with finite dimension.

Proof. Necessity. First suppose that X=Rn. Let A be a cozero-set and
f: A � Rn a continuous and bounded function. Then

f (t)=( f1(t), ..., fn(t)) \t # A

and the functions f1 , ..., fn belong to C(A, R).
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By hypothesis, there are functions f1 , ..., fn in C(T, R) such that

fi |A= fi , \i=1, ..., n.

It is clear that f� =( f1 , ..., fn ): T � Rn is a continuous and bounded exten-
sion of f.

In the general case, let X be a real normed space and let n=dim X. Let
H be an isomorphism from X onto Rn.

If A is a cozero-set and f # C(A, X), it is clear that H b f # C(A, Rn). By
the above there exists g # C(T, Rn) such that g|A=H b f. Then H &1 b g #
C(T, X). Moreover if t # A, we have that H&1 b g(t)=H &1(H b g(t))= f (t).

Sufficiency. It is sufficient to apply the hypothesis to X=R; K

In [2, Theorem 2] it was proved that the *-property in C(T, X) with X
strictly convex is equivalent to the next property:

Let T be a topological space and X a normed space. The pair (T, X) is
said to have the extension property if the following holds: If f: A � S(X)
is a continuous function from a closed subset A of T which has a conti-
nuous extension g: T � B(X) (i.e., g|A= f ), then f actually has a continuous
extension e: T � S(X).

Finally the next result provides us examples of pairs (T, X) such that
C(T, X) has the polar decomposition property.

Theorem 2.16. Let T be a topological space and X a normed space with
finite dimension. Then the following statements are equivalent:

(1) T is an F-space and (T, X) has the extension property.

(2) C(T, X) has the polar decomposition property.

Proof. (1) O (2). Let f # Y and define g on A=[t # T: & f (t)&>0] by
g(t)= f (t)�& f (t)&. Since A is a cozero-set, the continuous function g: A �
S(X) admits an extension g� in C(T, X) by Proposition 2.15. By the
continuity of g� we have

g� (A� )/g� (A)=g(A)/S(X).

Then g� |A� is a continuous function from A� into S(X) such that its restriction
to the set A is g. The function r b g� : T � B(X) where r: X � B(X) is the
mapping defined by

r(x)={
x

&x&
x

if &x&�1

if &x&�1

24 JIME� NEZ-VARGAS, MENA-JURADO, AND NAVARRO-PASCUAL



is a continuous extension of g� |A� . Since (T, X) has the extension property
there exists e: T � S(X) continuous such that e|A� = g� |A� .

It is immediate to check that f (t)=& f (t)& e(t) \t # T.
(2) O (1). Let A be a closed subset of T and g: A � S(X) a continuous

function such that there exists f: T � B(X) continuous with f | A= g.
By hypothesis, there is a e: T � S(X) continuous such that

f (t)=& f (t)& e(t) \t # T.

If t # A, we have

g(t)= f (t)=& f (t)& e(t)=e(t).

Hence e is a continuous extension from T into S(X) for g and therefore
(T, X) has the extension property.

We now show that T is an F-space. By (2) every element of C(T, X) has
a polar decomposition. This also holds for every continuous function (not
necessarily bounded) from T into Rn, where n=dim X by Proposition 2.14.

Let f: T � R be a continuous function and z=(z1 , ..., zn) # S(Rn). The
function g: T � Rn given by

g(t)= f (t) z \t # T

is continuous. Hence there exists a continuous function e: T � S(Rn) such
that

f (t) z=| f (t)| e(t) \t # T.

Let zi {0. Then

f (t)=| f (t)| r \ei (t)
zi + \t # T,

where r: R � [&1, 1] is the natural retraction.
From the above it follows that every continuous function from T into R

admits a weak polar decomposition and, consequently, T is an F-space by
Corollary 2.13. K

The preceding result was obtained for X=K (R or C) in [4, Lemma 6].
Given a topological space T we will denote by dim T the covering

dimension of T (see [5] for definitions). By using [10, Theorem 9t], Theorem
2.16 yields the following result.
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Corollary 2.17. Let T be a completely regular F-space and X a
finite-dimensional strictly convex normed space. Suppose that dim T<dim X.
Then E(Y) is proximinal in Y.

3. FUNCTIONS HAVING NO ZEROS AND *-PROPERTY IN C(T, X)

If Y is a normed space, consider for each y in B(Y) the possible convex
combinations y=*e+(1&*) g, where e # E(Y) and g # B(Y). The supremum
of all *'s in such decompositions is denoted by *( y) by Aron and Lohman,
and this defines the *-function *: B(Y) � [0, 1], see [1].

The space Y is said to have the *& property if *( y)>0 for all y in B(Y),
and Y has the uniform *-property if Y verifies the *-property and, in
addition, satisfies

inf [*( y): y # B(Y)]>0.

In [2] several characterizations of the *-property in function spaces
C(T, X), with T a topological space and X a strictly convex normed space,
were obtained. Moreover, they got a formula for the *-function by assum-
ing that C(T, X) has the *-property. A more complete theory may now be
obtained with the aid of the functions in C(T, X) which have no zeros.

In this section we will obtain the general expression of the *-function in
spaces C(T, X) (with X strictly convex). Our expression is also valid when
C(T, X) fails the *-property.

Now we are ready to obtain the expression of the *-function in C(T, X).

Theorem 3.1. Let T be a topological space and X a strictly convex
normed space. The *-function on the unit ball B(Y) for Y=C(T, X) is given
by the formula

*( f )=1& 1
2 dist( f, E(Y))={

1
2 (1+m( f ))
1
2 (1&:( f ))

if f # Y&1

if f � Y&1 .

Proof. The second equality follows from Theorem 2.6. Let f be in B(Y)
and d=dist( f, E(Y)). If f =*e+(1&*) g with e # E(Y) and g # B(Y), then
it is clear that d�& f&e&�2(1&*) and so *�1&(d�2). Since this holds
for all decompositions, we conclude that *( f )�1&(d�2).

To prove the reverse inequality, first suppose that f # Y&1. Then :( f )=0
and d=1&m( f ). Let e be in E(Y) defined by e(t)= f (t)�& f (t)& for every t
in T. Define *=1&(d�2)= 1

2(1+m( f )). If *=1, then & f (t)&=1 \t # T and
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f =e. Hence *( f )=1=1&(d�2). For *<1, let us define g=( f &*e)�(1&*).
Since

&g(t)&=
1

1&* "f (t)&*
f (t)

& f (t)&"=
| & f (t)&&*|

1&*
�1, \t # T

g # B(Y). The expression f =*e+(1&*) g shows that

*( f )�*&1&
d
2

.

Let us now suppose that f � Y&1. Then m( f )=0 and d=1+:( f ). Let * be
]0, 1&(d�2)[. Then :( f )<1&2*. By Theorem 2.2, there exists a continuous
function e from T into S(X) such that

e(t)=
f (t)

& f (t)&
if & f (t)&�1&2*.

Taking g=( f &*e)�(1&*), this reads f =*e+(1&*) g with e # E(Y) and
g # B(Y). So *( f )�*. It follows that *( f )�1&(d�2), giving the desired
equation. K

A similar result for C*-algebras was proved by Brown and Pedersen in [3,
Theorem 3.7].

Theorem 3.1 provides information about the problem of minimal decom-
positions of elements as convex combinations of extreme points.

Corollary 3.2. Under the hypotheses of above theorem, if f # B(Y) and
f is *1e1+ } } } +*nen for *1 , ..., *n # [0, 1] such that *1+ } } } +*n=1 and
e1 , ..., en in E(Y), then *( f )>0 and

n�
1

*( f )
={

2
1+m( f )

2
1&:( f )

if f # Y&1

if f � Y&1.

Proof. It is clear that *k�*( f ) for k=1, ..., n so, we get 1�n*( f ). The
proof is finished by Theorem 3.1. K

The next result shows the *-function measures how close f # B(Y) is to
being an extreme point of the unit ball.

Corollary 3.3. Let T be a topological space and X a strictly convex nor-
med space. Every f in B(Y) such that *( f ) is attained admits a best approxima-
tion in E(Y).
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Proof. Let f be in B(Y) such that *( f ) is attained. Hence there are
e # E(Y) and g # B(Y) such that f =*( f )e+(1&*( f )) g. Then

& f&e&=(1&*( f )) &g&e&�2(1&*( f ))=dist( f, E(Y))

by Theorem 3.1. Hence e is a best approximation for f in E(Y). K

If Y=C(T, X), it is clear that if the set Y&1 is dense in Y, then :( f )=0
for every f in B(Y). The following proposition shows that, for general
C(T, X)-spaces, sup [:( f ): f # B(Y)], is either 0 or 1.

Proposition 3.4. Let T be a topological space, X a normed space such
that Y&1 is nondense in Y. Then there is an h in Y with &h&=:(h)=1.

Proof. We take f in Y with :=:( f )>0 and define a continuous
mapping h: T � X by

h(t)={
f (t)

& f (t)&
f (t)

:

if & f (t)&�:

if & f (t)&<:.

Clearly &h&=1. Then :(h)�1. Let us suppose to obtain a contradiction
that :(h)<1. Let * be in ]:(h), 1[. By Theorem 2.2 the continuous
function

t [
h(t)

&h(t)&
=

f (t)
& f (t)&

defined for every t with &h(t)&�* (that is, & f (t)&�:*), has a continuous
extension e: T � S(X). By Corollary 2.3, :=:( f )�:*<:, a contradiction.

K

We now prove that the extension property can be reformulated by means
of the functions which never vanish.

Proposition 3.5. Let T be a topological space, X a normed space. The
following conditions are equivalent:

(1) The pair (T, X) has the extension property.

(2) Y&1 is dense in Y.
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Proof. (1) O (2). Let h be in Y and =>0. Let us define g: T � X by

g(t)={
h(t)

&h(t)&
2h(t)

=

if &h(t)&�
=
2

if &h(t)&�
=
2

.

It is clear that g is continuous and A=[t # T: &h(t)&==�2] is closed. By
hypothesis there exists e from T into S(X) continuous such that e(t)=
h(t)�&h(t)& for t in A. Let y be in Y defined by

y(t)={
h(t)

=e(t)
2

if &h(t)&�
=
2

if &h(t)&�
=
2
.

Evidently y # Y&1 and &h& y&�=.
(2) O (1). Let us consider a continuous function f: A � S(X) defined on

a closed set A of T such that there exists a continuous mapping g: T �
B(X) with g(t)= f (t) for t in A. Since Y&1=Y, :(g)=0. By Theorem 2.2
there exists e: T � S(X) continuous such that

e(t)=
g(t)

&g(t)&
if &g(t)&�1.

It is clear that e is an extension of f. K

Finally we give some new characterizations of the *-property in spaces
Y=C(T, X) with T a topological space and X a strictly convex normed
space by using the functions in Y&1 (see also [2, 7]).

Corollary 3.6. Let T be a topological space and X a strictly convex
normed space. The following conditions are equivalent:

(1) *( f )= 1
2(1+m( f )) for every f in B(Y).

(2) Y has the uniform *-property.

(3) Y has the *-property.

(4) :( f )<1 for every f in B(Y).

(5) Y&1 is dense in Y.

(6) (T, X) has the extension property.
Moreover, for T completely regular and X finite-dimensional, the condi-

tions (1)�(6) are equivalent to
(7) dim T<dim X.
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Proof. The implications (1) O (2) O (3) are trivial, (3) O (4) and
(5) O (1) follow by Theorem 3.1, and (4) O (5) is the Proposition 3.4. The
Proposition 3.5 is (5) � (6) and the equivalence (6) � (7) is due essentially
to Smyrnov [10, Theorem 9t]. K
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